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Abstract

We describe in this paper a new procedure for
computing traveltimes for a grid of points by solving
the wave equation using the rapid expansion method
(REM). Using the REM approach, the wave equation
solution is expanded in a series of Chebyshev
polynomials. The Chebyshev polynomials can tell
us where the wave will go but not when. Their
wavelike character result from the repeated recursive
application of the Laplacian that generates the
Chebyshev polynomials. Thus, in order to identify the
arrival time on each grid point, we use the maximum
amplitude criterion and the arrival time on each point
of the grid is assigned by taking the correspondent
Chebyshev recursion number related to the maximum
amplitude event.

To demonstrate the efficiency and applicability of our
alternative procedure to calculate traveltimes, using
the Chebyshev polynomial recursion, we apply it to
the Kirchhoff operator for depth migration. Next,
the migration results from two synthetics dataset
using traveltime tables computed by a conventional
Kirchhoff migration, using ray tracing traveltime
algorithm, are compared with the Kirchhoff migration
results, using traveltimes computed by the chebyshev
polynomial, recursion combined with the maximum
amplitude criterion.

Introduction

The Kirchhoff operator is currently the most widely used
migration operator, because of its computational efficiency,
steep dip accuracy and potential I/O flexibility. The
common method used to compute Green’s function for
Kirchhoff migration is based on the high-frequency ray
approximation. This approximation leads to traveltimes
independent of the amplitude, where the ray path and
consequently the traveltimes are found by solving the
eikonal equation and amplitudes are solved with the
transport equation (Aki and Richards, 1980).

In most of the cases, traveltime tables for Kirchhoff operator
are calculated using first arrivals by ray-tracing technique
employing as input a smooth version of the velocity model,
i.e. some information in the the velocity model is lost

and the classical ray shooting that propagates single rays
through the medium with complex geology usually leads to
poor illumination.

In general, the Kirchhoff migration operator is implemented
using traveltimes computed by a ray tracing algorithm and
it often does not work well in complex media.

In the literature, the traveltimes tables are computed using
different techniques to improve the Kirchhoff operator
performance for migration. These can be summarized
as: single-arrival Kirchhoff prestack depth migration
using a full-wave equation solution, maximum amplitude
arrival traveltime, band-limited Green’s function, paraxial
maximum-amplitude arrival (Audebert et al., 1997).

Traveltimes can also be computed by methods which
are based on the solution of the full wave equation.
Finite difference (FD) is a well known and popular
numerical solution for the wave equation. It has been
common to use FD approximation for both time and
spatial evolution of wavefields. Although easy to solve,
it is only conditionally stable, which imposes a limit
on the marching time step size. In addition to that,
all the finite difference methods suffer from numerical
dispersion problems. Various alternative approaches have
been proposed in the geophysical literature to achieve
stability and dispersion-free extrapolation of scalar waves
in heterogeneous media for large time steps (Du et al.,
2014).

Among these methods, we have the rapid expansion
method (REM), which makes use of the Chebyshev
expansion (Kosloff et al., 1989; Pestana and Stoffa, 2010).
This method has very high accuracy with respect to the
temporal extrapolation. The combination of the REM
approach and the Fourier method allows one to obtain
modeling results that are free of numerical dispersion.

In the paper presented by Pestana and Stoffa (2010),
a numerical example of seismic modeling for a salt-
model, shows the plot of several Chebyshev polynomials.
Even though the response of the Chebyshev polynomials
appears as propagating waves, time is not known for each
plot. We can also notice that the Chebyshev polynomial
results can tell us where the waves will go but not when.
Moreover, in these plots we can see waves propagating
through the medium and their wavelikes character results
from the repeated recursive application of the Laplacian
that generates the Chebyshev polynomials.

Based on an experiment presented in Pestana and Stoffa
(2010), we are proposing a simple and alternative way
to compute traveltimes. The proposed procedure utilizes
the Chebyshev recursion from the one-step solution of
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the acoustic wave equation by REM. In order to identify
the arrival time on each grid point, we use the maximum
amplitude criterion and the arrival time for each point of the
grid is assigned be taking the Chebyshev recursion number
related to the maximum amplitude of the wavefield on each
grid point of the model.

To demonstrate the superiority of the Kirchhoff migration
using the proposed traveltime computation, we show
the results using two synthetic datasets with complex
geological structures. We have tested our Kirchhoff
migration algorithm for the SEG/EAGE and Marmousi
models. The migration results are compared with the
results obtained through the Kirchhoff migration using
traveltimes computed using the Seismic Unix (Stockwell,
1999), where the traveltime tables are calculated by
paraxial ray tracing and traveltimes from the shadow zones
are replaced by the traveltimes obtained by solving the
eikonal equation.

Theory

Rapid expansion method: a one step solution

First presented by Kosloff et al. (1989), the rapid expansion
method (REM) solves the acoustic wave equation with zero
initial conditions. The acoustic wave equation is written in
operator notation as:

∂ 2P(x, t)
∂ t2 =−L2P(x, t)+S(x, t), (1)

where P(x, t) denotes the pressure wavefield, S(x, t) is
the source term, x = (x,y,z), with x, y and z Cartesian
coordinates and t is time.

For a 3-D constant density acoustic wave equation, −L2 is
given by:

−L2 = c2
(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)
, (2)

where c is the velocity.

The formal solution to equation 1 with initial condition can
be found as (Kosloff et al., 1989; Carcione and Seriani,
1992)

P(x, t) =
∫ t

0

sen [L(t − τ)]

L
S(x,τ)dτ. (3)

If the source term S(x, t) is separable, i.e.,

S(x, t) = g(x).h(t), (4)

where all time dependence is contained in h(t), the solution
3 can be written as

P(x, t) = G∗h(t) (5)

and

G =
sen(Lt)

L
g(x), (6)

where ∗ denotes convolution in time.

Now, using a modified Chebyshev polynomial expansion to
the sine function, which gives (Kosloff et al., 1989; Carcione
and Seriani, 1992)

P(x, t) =
∞

∑
k=0

b2k+1(t)
(

R
iL

)
Q2k+1

(
iL
R

)
g(x) , (7)

and
b2k+1(t) =

1
R

∫ t

0
J2k+1(τR) h(t − τ)dτ, (8)

where Jk is the Bessel function of order k, Qk are
the modified Chebyshev polynomials and for 2D wave
propagation, the value of R is given approximately by: R =

πcmax

√( 1
∆x
)2

+
( 1

∆z
)2 , where cmax is the maximum velocity

in the mesh and ∆x and ∆z are the grid spacings in x- and
z- directions, respectively.

In expression 7 we need to make sure that the number
of terms used by the Chebyshev expansion converges,
providing a good approximation of the sine function such
that the wavefield extrapolation can occur in a stable form.
The REM converges exponentially if k> tR. The summation
can be safely truncate with a kmax value slightly greater the
tR (Tal-Ezer, 1986)

Due to the fact that the solution of equation 1 only contains
odd polynomials, it is more convenient to use the following
recursion relation

Q2k+1(x) = 2
[
1+2x2

]
Q2k−1(x)−Q2k−3 (x), (9)

To initiate the recurrence, we need the terms:

Q1(x) = x, and Q3(x) = 3 x+4 x3, (10)

where we have replaced x by iL
R .

The Kirchhoff operator

This work considers a depth migration procedure using a
Kirchhoff operator. Kirchhoff migration involves integrating
traces amplitudes over a reflectivity model. After
traveltimes and Kirchhoff weights have been calculated,
the migration process can be written as a trace by trace
process.

Given the simplicity of the Kirchhoff adjoint operator, the
forward operator is straightforward to define.

The 2-D forward Kirchhoff operator can be written as

d(xs,xg, t) = ∑
Nx

∑
Nz

m(z,x)K(xs,xg,x,z, t), (11)

where d(xs,xg, t) is the data, m(x,z) is the model, and
K(xs,xg,x,z, t) are the Kirchhoff weights. Here xs and xg are
the source and receiver position, respectively, and t is the
traveltime that is normally obtained via ray tracing through
the velocity model.

The adjoint, or migration operator, can be written as

m(z,x) = ∑
Ns,Nz

d(xs,xg, t)K(xs,xg,x,z, t). (12)

Given the forward Kirchhoff operator, the data can be
generated from the reflectivity model. Given recorded data,
we may want to collapse diffractions to the position where
reflections occurred.

Maximum amplitude traveltime by Chebyshev
polynomial recursion

Computation of the travel times is the heart of the Kirchhoff
algorithm. Ray tracing is the most used method to compute
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the arrival times. An alternative procedure for computing
the arrival times for a grid of points is by solving the eikonal
equation by finite-difference method.

Here we suggest an alternative procedure to calculate the
arrival times based on the maximum amplitude criterion.
The solution of the wavefield response for an injected point
source based on the REM (Kosloff et al., 1989) is given
by equation 7 for a predefined propagation time t. Using
the Chebyshev recurrence relation (expression 9), we can
compute all Chebyshev polynomials based on the series
convergence, i.e., kmax has to be greater then tR (Tal-Ezer,
1986).

To determine the traveltime from the Chebyshev
polynomials we can use the maximum amplitude criterion
and thus we can identify the direct wave computed from
the modeling. This maximum amplitude criterion is justified
since the direct wave has the maximum amplitude at the
direct arrival time. Late arrivals have smaller amplitudes
due to the transmission losses. Using the maximum
amplitude criterion the travel time ti, j for each grid point
(i, j) at each k-step of the Chebyshev recursion is updated
and after finishing the last step of the Chebyshev recursion
a traveltime table is saved in a file to be used as input for
the Kirchhoff migration and modeling procedures.

Based on the following relation and using the maximum
amplitude of the Chebyshev polynomial ”wavefield” , we
can assign the traveltime on each grid point of the model,
which is given by:

t =
2k
R
, (13)

where k is the number of the Chebyshev recursion and R is
as defined above.

NUMERICAL RESULTS

Poststack migration results

To demonstrate the efficiency and applicability of the
proposed algorithm to compute traveltimes, we apply
Kirchhoff migration and compare the migration results
in terms of imaging quality using the traveltime tables
computed by paraxial ray tracing (SU code) with the
migration results of Kirchhoff migration using traveltimes
obtained by Chebyshev recursion, considering the
maximum amplitude criterion.

The first example taken for testing is the synthetic
SEG/EAGE dataset. It is a very well tested zero-offset
dataset sampled in time at ∆t = 0.008s and with nt = 626
samples per trace. The SEG/EAGE velocity model is
shown in Figure 1. This velocity model is sampled spatially
with ∆x = ∆z = 0.012 km. the model has 1290 points in the
horizontal direction (x) with 300 in the vertical direction (z).

Figure 2 shows the zero-offset migration result using
Kirchhoff migration algorithm with the traveltime computed
by Chebyshev recursion and maximum amplitude criterion.
In this case, the true velocity model is employed to compute
the traveltimes as described above. To compute the
traveltime based on the first arrival ray tracing algorithm,
we need to have a smoothed version of the velocity model.
Thus, to compute the ray tracing traveltimes we used the
smoothed velocity model for the SEG/EAGE shown in
Figure 3 and the Kirchhoff migration result using the ray
tracing first arrival traveltime presented in Figure 4.

Comparing the Kirchhoff migration results for the postack
migration of the SEG/EAGE dataset, we can notice
a superior migrated imaging using the Chebyshev
traveltimes. We can also see that the Chebyshev traveltime
with maximum amplitude criterion showed a better imaging
of the reflectors below the salt and also produced a better
image of the base and top of the salt body.
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Figure 1: SEG/EAGE salt velocity model
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Figure 2: SEG/EAGE Kirchhoff migration result obtained
based on the maximum amplitude traveltimes computed
by Chebyshev recursion and using the true velocity model
(Figure 1)
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Figure 3: SEG/EAGE salt smoothed velocity model
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Figure 4: SEG/EAGE Kirchhoff migration result obtained
using ray tracing first arrival traveltimes using the
SEG/EAGE smoothed velocity model (Figure 3)

Prestack migration results

We also tested the traveltime algorithm proposed here
on the Marmousi dataset. The Marmousi is constructed
based on a profile of actual geology, the velocity model
and structure are very complicated, and since then it has
become a popular test dataset for advanced migration
methods (Audebert et al., 1997; Bevc, 1995). The velocity
model, showed in Figure 5, has 369 points in the horizontal
direction (x) and 375 in the vertical direction (z) and the
spacings are ∆x = 25m and ∆z = 8m. In the velocity
model the velocities vary from 1500 m/s to 5500/,m/s. In
Figure 5 we also show some traveltime curves computed
by maximum amplitude criterion using the Chebyshev
recursion overlaid the Marmousi velocity model. The
Marmousi dataset used here has 240 shots and each shot
gather has 96 traces and each trace has 725 samples with
a time sampling interval of 4ms with nt = 725.

Figure 7 shows a smoothed version of velocity model
needed by the ray tracing algorithm to be used to compute
the arrival traveltimes.

Figures 6 and 8 show the Kirchhoff migration results
generated from traveltimes by maximum amplitude

Chebyshev recursion and by ray tracing traveltimes,
respectively. For the maximum amplitude traveltime
Chebyshev recursion algorithm we employed the
Marmousi true velocity model (Figure 5) and for the
ray tracing algorithm we used its smoothed version (Figure
7).

Again, using this prestack dataset, we can see that the
Kirchhoff migration result using the traveltimes proposed
here shows a better image than one obtained by the the
Kirchhoff migration using ray tracing traveltimes. Moreover,
the result after applying the Laplacian filter to remove
the low frequency noise (Figure 9) has much better S/N
ratio and shows much better imaging, especially in the
lower part of the model in comparison with the ray tracing
traveltimes migration result. So far, we have from these
results that the Kirchhoff migration using the traveltime
procedure proposed here can produce better results than
the traditional Kirchhoff migration method with ray tracing
traveltimes, especially in areas with complex geology, such
as those affected by salt tectonics.
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Figure 5: Marmousi velocity model on background and
on the top of it maximum amplitude traveltime curves
computed by Chebbyshev recursion for a source at 4120
m and a receiver at 6040 m.
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Figure 6: Kirchhoff migration result using maximum
amplitude traveltime computed by Chebyshev recursion
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Figure 7: Smoothed version of the Marmousi velocity
model
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Figure 8: Kirchhoff migration result using ray tracing
traveltimes. The traveltimes were computed using the
smoothed version of the Marmousi velocity model.
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Figure 9: Kirchhoff migration result using maximum
amplitude traveltimes by the Chebyshev recursion, after the
Laplacian filter to remove the low frequency noise

.

(14)

Conclusions
We have proposed an alternative and simple procedure
to calculate traveltimes using the REM wave equation
solution. Here the traveltimes are computed using the
maximum amplitude criterion applied for the Chebyshev
polynomials ”wavefield”. As the REM is a very accurate
method and its combination with the Fourier method allows
one to obtain modeling results that are free of numerical
noise, it can used to generate much better traveltime tables
for Kirchhoff migration compared with traveltimes based on
the full wave-equation solution.

From the Kirchhoff migration results, for both the
EAGE/SEG and Marmousi models, which are complex
geological structures, we showed that the migrated
sections obtained here using the traveltime computed by
the proposed algorithm, showed very goods results when
compared with the Kirchhoff migration results using ray
tracing traveltimes.

We conclude that the alternative procedure for traveltime
computation based on the maximum amplitude by the
Chebyshev recursion can be applied with the Kirchhoff
migration operator to produce accurate results especially
for complex geology, as showed in our results.
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